TensorFlow学习笔记6

TensorFlow搭建神经网络可视化结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise


xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
l1 = add_layer(xs,1,10,activation_function = tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)


loss =tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# init = tf.initialize_all_variables()
init = tf.global_variables_initializer()

sess = tf.Session()
sess.run(init)

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)

plt.ion()
plt.show()
# plt.close()

for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i % 50 == 0:
# print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

try:
ax.lines.remove(lines[0])
except Exception:
pass

prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data,prediction_value,'r-',lw = 3)
plt.pause(0.5)


运行的效果
这里写图片描述


TensorFlow学习笔记6
http://yoursite.com/2019/09/03/计算机相关/TensorFlow/TensorFlow学习笔记(六)/
作者
mohuani
发布于
2019年9月3日
许可协议